Uncertain altruism and the design of social LTC insurance

C. Canta (NHH), H. Cremer (TSE), and F. Gahvari (University of Illinois at UC)

Workshop on LTC, Montreal, April 28 2016

Canta, Cremer, Gahvari

Uncertain altruism

Workshop on LTC 2016 1 / 34

Uncertain altruism

- Traditionally, informal care provided by the family has played central role in LTC provision
- However, the provision of informal care is subject to a number of risks
 - Death or absence of spouses and children
 - Evolution of norms
 - Uncertain altruism
- We focus on the latter source of uncertainty and look at the optimal design of public intervention in LTC provision

Research questions

- What is the optimal design of social LTC insurance when altruism of family members is uncertain?
- Two sources of risk: dependence and uncertain altruism
- We analyze and compare two regimes
 - Topping up
 - Opting out
- Is there a role for social insurance if fair private insurance is available?
- Can a combination of the two regimes do better?

Model overview

- Children can provide informal care for dependent parents because of ascending altruism
- We ignore other channels motivating informal care (bequests, norms...)
- Altruism parameter can take a continuum of values: social LTC regime has always an impact on informal care at the extensive margin
- Cremer et al (2016): look at similar scenarios, but with given level of altruism with possibility of default
- Here children's altruism is exogenous, and cannot be affected by the parents (Chabbakatri et al., 1993; Leroux and Pestieau, 2014)

Main results

- Under both Topping up and Opting out social LTC insurance reduces the probability of informal care from children
- Topping up is an inefficient way to insure against very selfish children
- However, it may lead to better coverage for the dependent with moderately altruistic children
- Under Topping up, social insurance is equivalent to private insurance
- Mixed regimes may be welfare improving

Outline

Motivation

The model

- Laissez faire
- First best
- Topping Up
- Opting out
- Topping up versus Opting out
- Private insurance
- 6 Mixed regime
 - Conclusion

- Two groups of agents: parents and their single children
- Parents live two periods: young and old
- When young work, consume, pay taxes, save (and purchase private LTC insurance)
- When old: dependent with a certain probability
- Children internalize the utility of their parents. Altruism parameter $\beta \geq \mathbf{0}$
- Two sources of uncertainty
 - Risk of dependence. Probability $\pi \in (0,1)$
 - Degree of altruism of children is unknown by young parents. $eta \sim {\sf F}(eta)$

Parents' expected utility

$$EU=c+\left(1-\pi
ight) U\left(d
ight) +\pi E_{eta}\left[H\left(m
ight)
ight]$$

- Each young parent receives the same (exogenous) income w in the first period, pays taxes, and chooses the level of
 - Savings s
 - (Private LTC insurance *i*)
- Assume U(.) and H(.) strictly increasing and strictly concave. H'(x) > U'(x) for all x.

- Adult children's utility if the parent is not dependent is linear in consumption c_{child}
- Children's utility if the parent is dependent

$$u = c_{child} + \beta H(m)$$

- Each child receives the same (exogenous) income y and chooses level of help a to be provided to parent if latter is dependent
- Assume $F(\beta)$ strictly concave

- \bullet The government levies a tax τ on parents during their young age to finance LTC transfers g
- The realization of β cannot be observed by the government
- We consider two regimes (and mix) depending on the potential role of the family:
 - **Topping up (TU)**: transfer g can be topped up with savings, (insurance benefits) and informal care
 - **Opting out (OO)**: transfer g is exclusive. To benefit from savings and informal care, parents have to opt out from the government program
- One could think of conditional transfers (TU) vs retirement homes (OO)

TIMING

- **Period 0**: Government announces a tax τ to finance LTC insurance, and insurance regime.
- Period 1: Parents are young and have each one child. Choose s (and i)
- Period 2: Nature draws β. Parents are old and children are adult. If dependent, parents can receive help from the state, the market, and the family.

We will first consider a case where there is no private insurance, and then will turn to the case with private insurance.

Laissez faire

• Parents' expected utility

$$EU = w - s + (1 - \pi) U(s) + \pi E [H(m)]$$

with $m = s + a^*(\beta, s)$

• Adult children's utility if the parent is dependent

$$u=y-a+\beta H(m),$$

Laissez faire

• Period 2: children choose a. First order condition

$$-1+\beta H'(s+a)=0.$$

• Threshold eta_0 such that $a \geq 0 \iff eta \geq eta_0$, given by

 $\beta_0 H'(m) = 1$

- The threshold increases in *s*: the higher the parent's savings, the lower the probability of child helping
- Dependent parents' consumption m = s + a*

$$m(\beta) \equiv \begin{cases} \left(H'\right)^{-1} \left(\frac{1}{\beta}\right) & \text{if } \beta \ge \beta_0 \\ m_0 = s & \text{if } \beta < \beta_0 \end{cases}$$

If β ≥ β₀, m(β) increases in β, and does not depend on s
Informal care is crowded out one-to-one by savings

Canta, Cremer, Gahvari

Uncertain altruism

Workshop on LTC 2016

Laissez faire

• Period 1: Parents choose s anticipating β_0 . Expected Utility

$$EU = w - s + (1 - \pi) U(s) + \pi \left[H(s) F(\beta_0) + \int_{\beta_0}^{\infty} H(m(\beta)) dF(\beta) \right]$$

First order condition

$$(1-\pi) U'(s) + \pi F(\beta_0) H'(s) = 1$$

- When the dependent parent receive informal care, saving has no benefit because of crowding out.
- Less than full insurance

First best

- Social planner's objective: maximize expected utility of parent taking the aid behavior as given
- First best: β is observable
- FB allocation maximizes with respect to m, d, and β_0

$$EU = w - (1 - \pi)d - \pi F(\beta_0)m_0 + (1 - \pi) U(d) + \pi \left[H(m_0) F(\beta_0) + \int_{\beta_0}^{\infty} H(m(\beta)) dF(\beta) \right]$$

• First order conditions

$$U'(d) = H'(m_0) = 1$$

 $H(m(\beta_0)) = H(m_0),$

 Full insurance for individuals that do not receive informal care Children help only if $\beta>1$

First best

- FB allocation can be easily decentralized under symmetric info with government transfers targeted to families with $\beta < 1$
- Transfer only to parents whose children's altruism is below 1
- The others will be taken care by their children (and receive more than full insurance)
- ullet Generally, however, eta is unobservable, as is the level of informal care
- Under asymmetric information, cannot used targeted transfers

- Transfer g can be topped up by savings and informal care
- Children's choice

$$-1 + \beta H' \left(s + g + a \right) = 0$$

• Threshold $\widetilde{eta}(s+g)$ such that $a\geq 0 \iff eta\geq \widetilde{eta}$, given by

$$1 = \widetilde{\beta} H'(s+g)$$

- Threshold increases in s and $g \longrightarrow$ public insurance reduces probability of informal care from children
- If a > 0, $m(\beta)$ is defined as at the laissez faire: full crowding out by government assistance

Parents' choice

$$(1-\pi) U'(s) + \pi F(\widetilde{eta}) H'(s+g) = 1$$

- Due to crowding out, government transfer is only relevant in case of no informal care
- Optimal *s* is decreasing in *g*.
- In case of no informal care, g reduces the need for self-insurance

Period 0: optimal policy maximizes

$$w - \pi g - s(g) + (1 - \pi) U(s(g)) + \pi \left[\int_{\widetilde{\beta}}^{\infty} H(m(\beta)) dF(\beta) + F(\widetilde{\beta})H(s(g) + g) \right].$$

• First order condition yields (for interior solutions)

$$H'(s(g)+g)=rac{1}{F(\widetilde{eta})}>1$$

- Substituting in the parents' FOC, we get U'=1
- Also implies that $\widetilde{eta}={\sf F}(\widetilde{eta})\longrightarrow\widetilde{eta}\leq 1$
- Consumption at FB level if no dependence
- ullet Less than full insurance for all individuals with eta < 1

Topping Up: intuition

- g affects informal care both at the extensive and at the intensive margin
- Due to one-to-one crowding out, public LTC insurance can only insure against the risk of dependence with no informal care
- Since transfer received by all dependent, less than full insurance for parents receiving no informal care
- \bullet Parents receiving some informal care but whose children have $\beta < 1$ are also not fully insured

- Transfer g cannot be topped up by savings and informal care
- Children choose whether to help or not, then parents decide whether to opt in or out the public program
- Assume g > s: parents with no informal care will always opt in
- If a > 0, $m(\beta)$ is defined as at the laissez faire
- Children provide care if

$$\beta \left[H(m(\beta)) - H(g)\right] - (m(\beta) - s) > 0$$

• Threshold $\widehat{\beta}$ such that $a \ge 0 \iff \beta \ge \widehat{\beta}$ • $\widehat{\beta}$ decreases in *s* and increases in *g*

- Opting in the public program implies that savings are waisted Higher savings lead to a higher probability of informal care (differently from TU)
- Parents choice

$$(1-\pi) U'(s) + \pi f(\widehat{\beta}) = 1$$

MB if healthy Impact on prob. of help

• Savings are always irrelevant in case of dependence

- Opt in: loose them
- Opt out: fully crowd out informal care

- s decreases as g increases
- Intuition: an increase in s increases the probability of help, but the impact is smaller the higher is g
- Period 0: optimal policy maximizes

$$w - \pi F(\widehat{\beta})(g - s) - s + (1 - \pi) U(s) + \pi \left[\int_{\widehat{\beta}}^{\infty} H(m(\beta)) dF(\beta) + F(\widehat{\beta})H(g) \right]$$

• Transfer only to dependent with no informal care

• First order condition yields (for interior solutions)

$$F(\widehat{\beta})H'(g) - f(\widehat{\beta})\left[H(m(\widehat{\beta})) - H(g)\right]\frac{\partial\widehat{\beta}}{\partial g} - F(\widehat{\beta})\left(1 - \frac{\partial s}{\partial g}\right) - (g - s)f(\widehat{\beta})\frac{d\widehat{\beta}}{dg} = 0$$

Insurance	Impact of g on	Impact of g on
against no help	extensive margin (-)	first period cons. (-)

- g affects informal help at the extensive margin, and this is taken into account when setting the optimal policy
- ullet Distortions on g and \widehat{eta} also affect gvt budget constraint
- Less than full insurance for parents receiving no informal care

- Cannot rank Topping up (TU) and Opting out (OO)
 TRADE OFE
- Suppose g^{TU} is the optimal TU transfer, and in OO regime set $g^{OO} = s^{TU} + g^{TU}$
- Opting out regime is less expensive: only parents with no informal care receive the transfer
- ...but since in this case $\widehat{\beta} > \widetilde{\beta}$, parents whose children have $\beta \in (\widetilde{\beta}, \widehat{\beta})$ are worse off

Canta, Cremer, Gahvari

• Sufficient condition: OO dominates TU if

$$\pi(1-F(\widehat{\beta}))g^{TU}-\pi\int_{\widetilde{\beta}}^{\widehat{\beta}}[H(m(\beta))-H(g^{OO})]dF(\beta)\geq 0$$

- First term is positive and represents savings under OO
- Second term is negative and represents the fact that OO may hurt parents whose children are moderately altruistic

Private insurance

- Assume now that parents can purchase fair private insurance
- Private insurance is a perfect substitute of public insurance in TU regime
- In the OO regime, some public insurance may still be optimal, but only if OO dominates TU with no private insurance
- Intuition as above: private insurance is an inefficient way to insure against default of children

Mixed regime

- We consider a scenario where mixed scheme is available
- Transfer g^{TU} can be topped up (financial transfer)
- Transfer g^{OO} is exclusive (retirement home)
- In other words, opting out parents can benefit from transfer g^{TU}

Mixed regime

Mixed regime

• Children help if
$$\beta \geq \widehat{\beta}$$
, with $\widehat{\beta}$ given by
 $\widehat{\beta} \left[H(m(\widehat{\beta})) - H\left(g^{OO}\right) \right] - \left(m(\widehat{\beta}) - s - g^{TU}\right) = 0,$

• Comparative statics

$$\frac{ds}{dg^{OO}} < 0$$
$$\frac{ds}{dg^{TU}} > 0$$
$$\frac{d\hat{\beta}}{dg^{OO}} > 0$$
$$\frac{d\hat{\beta}}{dg^{TU}} < 0$$

• g^{TU} and g^{OO} have opposing effects on savings and prob. of children's care

Canta, Cremer, Gahvari

Mixed regime

- Extra instrument for the government
- Transfer g^{TU} is used to mitigate the effect of g^{OO} on the probability of informal care
- We still have less than full insurance
- However, a mixed policy can be welfare improving with respect to isolated policies

Conclusion

- We analyze two regimes of LTC insurance under uncertain altruism
- Altruism parameter continuously distributed
- Tradeoff: OO better instrument to insure against full default of children...
- ...but if children have "intermediate" altruism, parents may be better off under TU
- A mixed regime combining OO and TU can improve allocation
- Only OO can be welfare improving if parents can purchase insurance